翻訳と辞書 |
Cheeger bound : ウィキペディア英語版 | Cheeger bound In mathematics, the Cheeger bound is a bound of the second largest eigenvalue of the transition matrix of a finite-state, discrete-time, reversible stationary Markov chain. It can be seen as a special case of Cheeger inequalities in expander graphs. Let be a finite set and let be the transition probability for a reversible Markov chain on . Assume this chain has stationary distribution . Define : and for define : Define the constant as : The operator acting on the space of functions from to , defined by : has eigenvalues . It is known that . The Cheeger bound is a bound on the second largest eigenvalue . Theorem (Cheeger bound): : == See also ==
* Poincaré bound * Stochastic matrix * Cheeger constant
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Cheeger bound」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|